(x^4+6x^2+7)/(x^2+x)

Simple and best practice solution for (x^4+6x^2+7)/(x^2+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^4+6x^2+7)/(x^2+x) equation:


D( x )

x^2+x = 0

x^2+x = 0

x^2+x = 0

x^2+x = 0

DELTA = 1^2-(0*1*4)

DELTA = 1

DELTA > 0

x = (1^(1/2)-1)/(1*2) or x = (-1^(1/2)-1)/(1*2)

x = 0 or x = -1

x in (-oo:-1) U (-1:0) U (0:+oo)

(x^4+6*x^2+7)/(x^2+x) = 0

x^2+x = 0

x*(x+1) = 0

x+1 = 0 // - 1

x = -1

x*(x+1) = 0

(x^4+6*x^2+7)/(x*(x+1)) = 0

(x^4+6*x^2+7)/(x^2+x) = 0 // * x^2+x

x^4+6*x^2+7 = 0

t_1 = x^2

1*t_1^2+6*t_1^1+7 = 0

t_1^2+6*t_1+7 = 0

DELTA = 6^2-(1*4*7)

DELTA = 8

DELTA > 0

t_1 = (8^(1/2)-6)/(1*2) or t_1 = (-8^(1/2)-6)/(1*2)

t_1 = (2*2^(1/2)-6)/2 or t_1 = (-2*2^(1/2)-6)/2

t_1 = (-2*2^(1/2)-6)/2

x^2-((-2*2^(1/2)-6)/2) = 0

1*x^2 = (-2*2^(1/2)-6)/2 // : 1

x^2 = (-2*2^(1/2)-6)/2

t_1 = (2*2^(1/2)-6)/2

x^2-((2*2^(1/2)-6)/2) = 0

1*x^2 = (2*2^(1/2)-6)/2 // : 1

x^2 = (2*2^(1/2)-6)/2

x belongs to the empty set

See similar equations:

| 25000x+13000=27500x | | 3x-(4x+1)=3(x-1) | | 15x^3-5x^2-10x= | | 12x+9=105 | | 3/5(x+2)+4/5(2x+4)=17 | | 8c-72=12c-72-4 | | 0=-16t^2+16t | | 36x^4-144x^3-480x^2-72x+336=0 | | X/2+2=-3 | | 47-9x=11 | | 1/10=h+6/5 | | Y=f(x)+1 | | AB=(x+6)(x+6) | | 1.8x-8=62 | | 3/5(x+2)+4/5(x+4)=17 | | [x+2]+7=45 | | 10x+15=115 | | x^2-3x+9x-27= | | x^2-3x+2x-6= | | 12x+12=7x+3 | | 1.5x-3=-24 | | y=-3/4(x)-2 | | [3x+4]=20 | | 7x4/9 | | [x+72]=45 | | 4(b+5/3)=4b-12/6 | | 0=-16t^2+68t+8 | | y=1/4(x)-3 | | 3a-4b=16 | | -4x+7=2-(x+1) | | 4p-7=7n+8 | | -5x=1/3 |

Equations solver categories